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We consider a low-temperature plasma within a newly developed magnetohydrodynamic fluid model. In
addition to the standard terms, the electron spin, quantum particle dispersion, and degeneracy effects are
included. It turns out that the electron spin properties can give rise to ferromagnetic behavior in certain
regimes. If additional conditions are satisfied, a homogeneous magnetized plasma can even be unstable. This
happens in the low-temperature high-density regime, when the magnetic properties associated with the spin can
overcome the stabilizing effects of the thermal and Fermi pressure, to cause a Jeans-like instability.
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Already in the 1960s, Pines studied the excitation spec-
trum of quantum plasmas �1�, for which we have a high
density and a low temperature as compared to normal plas-
mas. In such systems, the finite width of the electron wave
function makes quantum tunneling effects crucial, leading to
an altered dispersion relation. Since the pioneering paper by
Pines, a number of theoretical studies of quantum statistical
properties of plasmas have been done �see, e.g., Ref. �2� and
references therein�. For example, Bezzerides and DuBois
presented a kinetic theory for the quantum electrodynamical
properties of nonthermal plasmas �3�, while Hakim and Hey-
vaerts gave a covariant Wigner function approach for relativ-
istic quantum plasmas �4�. Recently, there has been increased
interest in the properties of quantum plasmas, e.g., �5–12�.
The studies have been motivated by developments in nano-
structured materials �13� and quantum wells �14�, the discov-
ery of ultracold plasmas �15� �see Ref. �16� for an experi-
mental demonstration of quantum plasma oscillations in
Rydberg systems�, astrophysical applications �17�, or a gen-
eral theoretical interest. Moreover, it has recently been ex-
perimentally shown that quantum dispersive effects are im-
portant in inertial confinement plasmas �18�. The list of
quantum mechanical effects that can be included in a fluid
picture includes the dispersive particle properties accounted
for by the Bohm potential �5–9�, the zero-temperature Fermi
pressure �5–9�, spin properties �10–12�, and certain quantum
electrodynamical effects �19–22�. Within such descriptions
�5–11,20–22�, quantum and classical collective effects can be
described within a unified picture.

In the present paper, we will make use of general equa-
tions for spin plasmas that were derived in Ref. �10�, and
further developed toward the magnetohydrodynamic �MHD�
regime in �11�. Exploring the basic set of equations presented
in Ref. �11�, we demonstrate that the standard plasma behav-
ior can be significantly changed by the electron spin proper-
ties, and that the plasma can even show ferromagnetic be-
havior in the low-temperature, high-density regime.
Furthermore, a homogeneous magnetized plasma can actu-
ally be unstable, even when the spin degree of freedom is in
thermodynamic equilibrium. The instability is due to the
magnetic attraction of spins, and the mechanism is concep-
tually similar to the well-known Jeans instability �23�. Ap-
plications of our results to laboratory and astrophysical plas-
mas are discussed.

Adopting the spin MHD equations put forward in Ref.

�11�, our plasma is described by the continuity equation

��

�t
+ � · ��v� = 0, �1�

the momentum equation
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+ v · ��v = − �� B2

2�0
− M · B�
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2memi
���2��
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and the idealized Ohm’s law

�B

�t
= � � �v � B� , �3�

where � is the plasma density, v the fluid velocity, B the
magnetic field, M the magnetization, P the pressure, me �mi�
denotes the electron �ion� mass, and � is Planck’s constant.
In addition to the standard ideal MHD momentum equation,
Eq. �2� contains the quantum Bohm potential �which tends to
smooth the density profile�, as well as magnetization effects
due to the electron spin. Equations �1�–�3� should be comple-
mented by an expression for the magnetization, as well as an
equation of state for the pressure. In thermodynamic equilib-
rium, the degree of spin alignment with an external magnetic
field is described by the Brillouin functions Bs, where the
index s is the spin number. For spin-1

2 particles we have
B1/2��BB /T�=tanh��BB /T�, leading to a corresponding mag-
netization

M =
�B�

mi
tanh��BB

T
�B̂ . �4�

Here B denotes the magnitude of the magnetic field and B̂ is
a unit vector in the direction of the magnetic field, �B
=e� /2me is the Bohr magneton, e is the magnitude of the
elementary charge, and T is the temperature given in energy
units. In general, the argument of the tanh function can vary
if, for example, the magnetic field strength varies. However,
when the variations of the magnetic field occur on a time
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scale shorter than the characteristic spin relaxation time, the
degree of alignment can be considered as approximately con-
stant. Since spontaneous spin changes do not occur for single
electrons �due to angular momentum conservation�, this spin
relaxation time is not smaller than the inverse collision fre-
quency, which can be taken as infinite in many applications.
This case will be considered for the remainder of this paper,
and thus tanh��BB /T�→ tanh��BB0 /T� in Eq. �4�, where the
index 0 denotes the unperturbed background value. Further-
more, for low electron temperatures, it is necessary to in-
clude the contribution from the zero-temperature Fermi pres-
sure in the equation of state. The equation of state reads

�P = cs
2��; �5�

we note that the ion acoustic velocity cs includes the contri-
butions from the ion and electron thermal motion, as well as
the electron Fermi pressure. Thus we have �22�

cs
2 = vti

2 +
me

mi
�vte

2 +
3

5
vFe

2 � �6�

where vti and vte are the �effective� ion and electron thermal
velocities �24�, whereas vFe is the electron Fermi velocity
�25�. Equations �1�–�6� constitute a closed set that describes
the spin-modified quantum MHD equations.

In what follows, we will study the linear modes of this
system, with a particular focus on the stability properties.
With �=�0+�1, B=B0+B1, M=M0+M1, and v=v1, such
that �1��0, �B1 � � �B0�, �M1 � � �M0�, and B0=B0ẑ, we lin-
earize our equations in the perturbed variables. Assuming
that the background quantities are constants, the general dis-
persion relation can, after a Fourier decomposition, be writ-
ten

��2 − kz
2C̃A

2�	��2 − k2C̃A
2 − kx

2ṼA
2�k����2 − kz

2VA
2�k��

+ kx
2kz

2ṼA
4�k�
 = 0, �7�

where C̃A is the spin-modified Alfvén velocity given by

C̃A =
CA

�1 + ���pe
2 /2mec

2�ce
�0��tanh��BB0/T��1/2 , �8�

CA is the standard Alfvén velocity CA= �B0
2 /�0�0�1/2,

ṼA
2�k� = VA

2�k� −
��ce

mi
tanh��BB0

T
� , �9�

and

VA
2�k� = cs

2 +
�2k2

4mime
. �10�

Here �pe= ��0e2 /�0memi�1/2 is the plasma frequency, and �ce
�0�

is the electron cyclotron frequency associated with the exter-
nal magnetic field �i.e., with the contribution to B0 from the
spin sources excluded�. The relation between the full elec-
tron cyclotron frequency �ce=eB0 /me and �ce

�0� is given by

�ce=�ce
�0�+ ���pe

2 /mec
2�tanh��BB0 /T�. We stress that ṼA,

which to some extent can be considered as an effective
acoustic velocity, may be imaginary for a strongly magne-

tized plasma due to the spin contribution, a fact that will be
explored in some detail below.

In deducing Eq. �7� we have assumed that the spin orien-
tation has reached the thermodynamic equilibrium state in
response to the external magnetic field. This ensures that
there is no free energy stored in the spin degree of freedom,
and as a consequence it turns out that the shear Alfvén mode
described by the first factor of �7� is always stable, since

clearly C̃A is always real. This is related to the fact that this
particular mode has no density perturbations. By contrast,
the second factor, describing the fast and slow magnetosonic
modes, does not necessarily predict stability. The reason is
that the electrons carry spin, and thus to some extent they
behave as single magnets. Just like magnets or gravitating
matter, the electrons may thus attract each other, leading to
an exponentially growing density, similar to the gravitational
Jeans instability. Naturally, electrostatic repulsion among the
electrons could in principle act as a strong counteracting
force to this scenario. However, within the low-frequency
MHD limit, ions and electrons move together, and thus the
Coulomb force does not provide a stabilizing mechanism. To
shed some further light on the stability properties, we con-
sider propagation perpendicular to the external magnetic
field, which is the geometry that leads to instability most
easily. For the case k=kx̂, Eq. �7� reduces to

� = k� CA
2

1 + ���pe
2 /2mec

2�ce
�0��tanh��BB0/T�

+ cs
2 +

�2k2

4mime
−

��ce

mi
tanh��BB0

T
��1/2

. �11�

The condition for instability is thus that the last negative
term of �11� dominates over all the others. Under this as-
sumption, we have depicted the growth rate as a function of
k in Fig. 1.

The necessary and sufficient instability condition can thus
be written as
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FIG. 1. Growth rate Im �̄ as a function of k̄ obtained from the
dispersion relation �11�. The relation �11� is of the form �

=k�b2k2−a2�1/2, and we use the normalization �̄= �b �� / �a�2 and k̄
= �b �k / �a�. We note that we have a maximal growth rate for the
wave number kmax= �a � / ��2 �b � �= �2memi��Psp �−Pm− P� /�0�2�1/2,
corresponding to a maximal growth rate �max= �memi�1/2��Psp �−Pm

− P� /�0�. Furthermore, although �11� is a linear dispersion relation,
the present instability shows similarities to the modulational
instability.
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Psp + Pm + P +
�0�2k2

4memi
� 0, �12�

where the total pressure Ptot= Psp+ Pm+ P consists of the ef-
fective spin pressure Psp=−��0��ce /mi�tanh��BB0 /T�, which
is the only negative pressure term and therefore the source of
the instability, the magnetic pressure Pm, and the particle
pressure P=n0mics

2, containing both the thermal and Fermi
pressure parts. Furthermore, the magnetic pressure Pm is
given by

Pm =
�0CA

2

1 + ���pe
2 /2mec

2�ce
�0��tanh��BB0/T�

. �13�

Thus a necessary �although not sufficient� condition for in-
stability is

	 
 	c  �� �

eB0 tanh��BB0/T��
1/2

, �14�

which means that the instability is stabilized for short wave-
lengths 	=2� /k, similar to the Jeans instability. The stabi-
lizing influence for short wavelengths stems from the Bohm
potential. Furthermore, the partial instability condition

�Psp� 
 P �15�

means that a finite pressure also may lead to stabilization. We
note from Eq. �6� that a low temperature is not necessary to
satisfy this condition, since the zero-temperature Fermi ve-
locity contributes to cs

2 and thereby to P. However, for a
sufficiently strong magnetic field, clearly �15� can be satis-
fied. Finally, the last part of the instability condition reads

�Psp� 
 Pm, �16�

which means that the magnetic pressure also acts as a stabi-
lizer. For a given magnetic field, this condition may be sat-
isfied for a sufficiently high density. However, increasing the
density means that the Fermi velocity is increased, which
may lead to a violation of �15�. To simultaneously satisfy
�15� and �16�, and thereby to satisfy �12�, it is required that
the second term in the denominator of the right side of �13�
be larger than unity, i.e.,

�ce
�0� �

��pe
2

2mec
2 tanh��BB0

T
� . �17�

Since the spin cannot contribute much to the unperturbed
field unless the temperature is small enough to allow a sig-
nificant alignment, this condition in turn requires

1 �
�2�pe

2

2mec
2T

. �18�

For temperatures small enough to satisfy �18�, the spin con-
tribution to the unperturbed field dominates over the external
field, and the plasma thus shows ferromagnetic behavior. In
contrast to a normal ferromagnet, however, the density varia-
tions are not restricted, which render possible the instability
discussed above. However, plasmas with the required back-
ground parameters are not easy to produce, as we can see
from the following examples. First, if we choose a high-
density plasma as in inertial fusion experiments, �
�106 kg /m3, ferromagnetic behavior occurs for tempera-
tures T104–105 K, as described by the inequality �18�. In
this regime the Alfvén velocity can differ much from the
standard Alfvén velocity, as given by �8�. If, in addition, we
want the Jeans-like instability to occur, the most severe con-
dition to satisfy is �15�, which requires temperatures T
20 K for standard laboratory field strengths. Until a few
years ago, the only known plasmas where such low tempera-
tures could be found were solid state plasmas, which do not
fit into the MHD-like model used here. However, recently
gaseous plasmas with ultralow temperatures T10−3 K have
been constructed with the aid of Rydberg atoms �15,16�. Un-
fortunately, the combined requirement of a reasonably high
density, Eq. �18�, rules out the spin instability described
above in such a laboratory setting.

In addition to laboratory applications, the theories de-
scribed above could be adopted for astrophysical purposes
�17�. In magnetar atmospheres, the strong magnetic field
makes it possible to satisfy the conditions �15� even for a
relativistic temperature. In that case, we should adopt the
theory to a pair plasma �12� rather than an ion-electron
plasma. Furthermore, for white dwarf stars, the high density
causes the condition �18� to be satisfied.
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